Step of Proof: assert_of_lt_int
9,38
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
assert
of
lt
int
:
1.
x
:
2.
y
:
3.
x
<z
y
4.
(
x
<
y
)
x
<
y
latex
by ((((Unfold `lt_int` 3)
CollapseTHEN (RWH (ReduceThenC (Auto_aux (first_nat 1:n) ((first_nat
C
2:n),(first_nat 3:n)) (first_tok :t) inil_term)) 3))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
3.
ff
C1:
4.
(
x
<
y
)
C1:
x
<
y
C
.
Definitions
P
Q
,
P
Q
,
t
T
,
True
,
T
,
,
P
Q
,
P
Q
,
False
,
x
:
A
.
B
(
x
)
,
A
,
i
<z
j
Lemmas
bfalse
wf
,
bool
wf
,
true
wf
,
squash
wf
,
assert
wf
origin